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T R A N S I T I O N  R A D I A T I O N  IN A N  E L A S T I C  W H E E L  

A. V. Metr ik in  UDC 624.07:534.1 

The phenomenon of transition radiation has been known in physics since the middle of the present 
century [1]; at present it has been investigated in detail in electrodynamics [2] and acoustics [3]. In connection 
with the development of high-speed ground transportation and the increase in machinery speed of operation 
in the last decade, it has become obvious that transition radiation plays a significant role in the interaction of 
elastic structures with moving objects [4-7]. A clear example of such a structure is the current collector unit 
of an electrical vehicle, where the moving collector excites elastic waves in a contact wire due to the presence 
of various clips, holders, airswitches, etc. [8]. 

The radiation generated can, on the one hand, cause some undesirable events, like an increase in the 
amplitude of oscillations of the collector [7] or losses of contact [9], and, on the other hand, is a natural field 
of deformations, making it possible to determine the state of the system. Another important example of a 
mechanical system where the moving load can excite elastic waves is an elastic wheel [10], a typical element 
of most mechanisms. If the wheel is nonuniform over the angular coordinate (i.e., if there are spokes, hanger 
brackets, disk brakes, etc.), transition radiation will occur. The investigation of transition radiation as applied 
to an elastic wheel is of both theoretical and practical interest. From the theoretical viewpoint, it is interesting 
to analyze the features of radiation that are related to the closedness of an elastic system. The necessity of 
elaborating a proper theory of aircraft gear instability ("shimmy"), adequate to modern landing speeds, shows 
the practical importance of the problem. 

The goal of the present study is to qualitatively investigate the phenomenon of transition radiation in 
an isolated elastic system. We simulate the wheel as a wire expanded with springs, the stiffness of which is 
uniformly distributed over the angle (Fig. 1). The nonuniformity is presented in the form of concentrated, 
elastic-inertial "spokes" placed equidistantly along the wheel perimeter. It is assumed that, as a result of 
interaction with a ground surface (or any similar object), the wheel is affected by a force which is constant 
in modulus and is directed along the radius; the point of application of this force rotates at a constant 
angular velocity. Using the method of images [11], we have obtained an exact solution to the problem of 
steady oscillations of the wheel. It has been established that under the effect of a moving load, the transition 
radiation of elastic waves may occur in the wheel. The spectrum of this radiation is discrete and the phase 
velocity of each harmonic is equal to the load velocity. It has been shown that a resonance can take place 
when the wavelength of one of the harmonics is a multiple of the wheel length. 

Let a nontensible wire of length l be expanded by the springs, which are uniformly distributed over 
the angle with density k per unit length, one end of each being tied to a solid axle. If the length a of the 
unstrained spring is greater than R = 1/27r, the wire will be expanded, acquiring the form of a ring. The wire 
tension, according to [12], is determined as T = k R ( a  - R ) .  We will also assume that, along with springs, 
the wire is linked with the axle by means of concentrated, equidistant, elastic-inertial "spokes," the number 
of which is N. We consider all "spokes" equal, with mass m, stiffness k0, and viscosity v. The length of the 
unstrained "spoke" element is assumed to be equal to R. 
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Fig. 1 

Let us examine the forced oscillations of the wire excited by a radial, modulus-constant force F ,  with the 
point of application rotating at a constant angular velocity w. According to [12, 13], the equations describing 
small radial wire oscillations are given by 

p U r r - T U s s + k U = - F b ( s - R w r + l { w r / 2 7 r } ) ,  O<~s<~l, O<<. r < ~ ,  [U]s=nt/N=O, 
(1) 

V ( n l / g ,  r) = yn(r),  T[Us]s=,a/g = mijn + v~n + koYn, V(s  + l, r) = V(s ,  r),  1 <~ n <<. g 

(in a linear approximation, this model describes tangent oscillations independent of radial ones). Here, U(s, r) 
is the radial displacement of the wire; yn(r) is the radial displacement of nth  inertial "spoke" element; r is 
the time; s = Rqa is an angular variable (T denotes angle); p is the wire density per unit length; 6(. . .)  is a 
Kronecker delta; {b} denotes the integer part of the number b; [f]s=c = f ( c  + O) - f ( c  - 0). 

We will seek the solution to problem (1) using the method of images. Assuming the elastic system 
infinite, we choose auxiliary imaginary sources to satisfy the periodicity condition U(s + l, r) = U(s, r). 
It is evident that  the sources of the force F moving as sk = w R r  + kl (k = 0, :t=l, + 2 . . . )  satisfy these 
requirements. Consequently, after nondimensionalization, the auxiliary problem which has a solution identical 
to that  of system (1) for s e [0, l] will take the form (Fig. 2) 

o o  

Uu - U~x + U = - P  y~  6(x - vt + Ndk) ,  - o o  < x < oo, - o o  < t < oo, 
k=-oo 

(2) 
[U]x=nd = 0, U(nd, t) = vn(t), [Uz]x=,a = M~n + 6iln + K V , ,  n = O, =t=1, =1=2,..., 

where x = sh/c ,  t = hr (h = (k/p)  1/2, c = (T/p)  1/2) are the dimensionless coordinate and time, respectively; 
v = w R / c  is the dimensionless velocity of the load (here and below v < 1); d = h l / c N  is the dimensionless 
distance between the "spokes"; P = F/phc  is the load; M = m h c / T ,  6 = v c / T ,  K = koc/hT are the 
dimensionless mass, viscosity, and stiffness of the "spoke"; the dot above yn denotes differentiation with 
respect to the dimensionless t ime t. 

To determine the steady-state wire oscillations, we apply to (2) the Fourier transform 
oo 

= f u( ,t)exp(i t)at, 

For the transform we obtain 

V ~  + 6o 2 - 1)U = s exp ( iwz/ , , )  
V 

= f v.(t) exp (i,,,t) dr. 

c o  

exp ( iwdNk /v ) ,  

[V]x=na = 0, V(nd,  w) = zn(w), [V]x=na = ( K -  i S w -  Mw2)zr,. 

For x E [0, d] the general solution to (3) is given by 

V(z) = Aexp ( i z ~ w  2 -  1) + B e x p ( - i x ~ w  2 - 1 ) -  S e x p ( i w z / v ) ,  

(3) 

(4) 
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x f v t - N d  ~ xf f ivt  x = v t + N d  

Fig. 2 

x 

where 
Pv oo 

S(w) exp( iwdN k / v ) . 
- + v2  

k=--oo 

As the "spokes" are equidistant and the load moves uniformly, system (2) must satisfy the periodicity 
condition 

U(x, t) = U(x + d, t + d/,,), (5) 

the transform of which is 

V(x + d) = V(x) exp (iwd/v). (6) 

Combined with the periodicity condition, expression (4), which describes V(x) for z E [0, d], allows us to 
extend the solution of (3) to any z. In particular, to x E [d, 2d] 

V(x) =exp( iwd/v) (Aexp( i (z -d)v / -~w 2 -  1)+  B e x p ( - i z ( z - d ) k / - ~ 2 -  1 ) ) -  Sexp( iwz /v ) .  (7) 

Assuming that zo(w) = C(w), from the periodicity condition (6) we derive 

Zn = C exp (iwdn/v). (8) 

Joining the solutions of (4) and (7) at x = d and using (8), we write the following system of equations 
to determine A, B, and C: 

A + B - S = C ,  aexp(idv[-~w 2 - 1 ) + B e x p ( - i d ~ / ~ ) = ( A + B ) e x p ( i w d / v ) ,  

i~w 2 - l ( e x p ( i w d / v ) ( a -  B ) -  Aexp( id~w 2 - 1) + B e x p ( - i d v ~ w 2 -  1)) = C ( K  - i 6 w -  Mw2)exp(iwd/v), 

Now, switching to the inverse transform, we obtain an exact solution to problem (2), describing the 
steady-state oscillations of a wire for x E [0, d]: 

} s  -)exp(i VG   i) i 
U(x, t) = ~ -~(Gp(p - 

- - 0 0  

+ ap(7 + - p) exp(- ix  ~ w  2 - 1 ) - A exp(iwx/v)) exp(--iwt )dw. (9) 

The wire displacement for x E [d, Nd] is derived with the help of the periodicity condition (5). 
The solution to problem (2) for x E [0, Nd] is identical to that of problem (1); hence, expressions (9) 

and (5) taken together determine an exact solution to the starting problem (1). 
The poles in (9.) satisfy the equation 

A = 0 r cos(zed) = cos(wd/v), (10) 

where cos (ze d) = cos(dv/~F-Z-i-- 1) + G sin ( d ~ ) / 2 ~  is the dispersion equation for the tense wire 
(string) lying on equidistant props. The roots of Eq. (10) are a discrete set of frequencies and determine the 
harmonics excited by the load. This equation has a simple physical interpretation. Indeed, when the load 
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crosses a "spoke," transition radiation of elastic waves is excited in the wire [4], having continuous spectrum. 
Because of the periodicity of the elastic system, the radiation fields from every "spoke" come in phase only 
at certain frequencies. Thus, when the regime is steady, the spectrum of radiation becomes discrete and the 
frequencies of the harmonics are determined by Eq. (10), which is, in fact, a condition for the "resonance" 
of radiation fields (for this reason, the transition radiation in a periodically nonuniform media is called the 
resonance transition radiation [2]). 

Equation (10) can be rewritten in a more compact form. Indeed, it follows from (10) that  

ee+ 27rj/d = w /v ,  j = O, 4-1, 4-2 . . . .  (11) 

The expression ~e+ 2 r j / d  is nothing else but the wave number k~ of the j t h  spatial harmonic in a periodically 
nonuniform medium [14]. Therefore, (10) can be rewritten as v~ = v ,  where v~ 'h = to[kj is the phase velocity 
of the j t h  harmonic. Thus, the phase velocity of each harmonic is equal to the load velocity. 

Determination of the resonance parameters of a system that  yield a sudden increase in oscillation 
amplitude is important  for practical needs. Let us find resonance conditions for our model of an elastic wheel. 
Without restricting the generality, we will find them by examining the oscillations of only one "spoke". Since 
the choice of t ime moment  is not important  when determining the resonance parameters,  to shorten the 
calculations we choose a "spoke" having number  n = 0, at zero time t = 0. In accordance with (9), the 
displacement of the inertial element of the chosen "spoke" at t = 0 is given by 

'7 17 '7 y0(0) = ~ z (w)  dw = ~ A a i A d w  = 4r  S(to) cos (wd/v)  - cos (d~/'w "~ - 1 ) 
- - -  cos(,odlv) - cos(~a)  ~ '  (12) 

where S(w)  is the same as in (4). We perform the integration (12) using the residue theory. Splitting the 
integral into three parts, we write 

where 

v0(0) = - ( s l  + s2 + s3) /4 . ,  

S~ = f D-'(w)(cos(.,dlv)- cos (dQr~-7~ ~ -  1 ) ) ~ ;  

I2 = E f D-l(~l(cos(tod/v) -cos(dV r~-Tw2 - 1))exp(itodNklv)d,.; 
k= l-oo 

h = IL D(to) = (~3(i - , ? )  + v2)(cos (toe/v) - cos (~d))/P~,; 

here the asterisk denotes complex conjugation 
We ca lcula te / I ,  12, and 13 sequentially. For I1 we write 

OO 
1 1, = -~( f D-'(~)(exp(itodlv) -exp(iavr~-j- 1))dw + c.c.). (13) 

Closing the integration path through the upper half-plane of the complex variable w for the first integral from 
(13) and through the lower half-plane for the second one, we obtain 

s,= iE Res 
ra Ira(win)>0 t 

1 

i Im(wl)<0 t - I  

where tom and tot are zeros of the function D(w) in the upper and lower half-planes of to, respectively; 
Res{f(wk)} is the residue of the function f ( w )  at wk. 
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Now we pass to calculation of/2.  Since N/>  1, an integral taken along the half-circumference of infinite 
radius in Im (w) > 0 tends toward zero. Hence, closing the integration path through the upper half-plane of 
w, we find 

DO 

k=: "A" ~(~m)>0 

As a consequence of Ira(win) > O, the derived equation can be summed over all k using a formula for the 
sum of an infinite geometric progression, the denominator of which is exp(iwmdNk/v). Having performed this 
operation, we find 

exp(iwmdN/v) Res {D -1 } I2 = 27ri y~m 1 -exp(iwmdN/v) ~(w,,,)>0 (wm)(cos(wmd/v) - c o s ( d ~ m  - ]')) . (15) 

To calculate/3, we must close the integration path through the lower complex half-plane. Being summed 
over all k, the expression for Ia takes the form 

exp(-iwtdN/v) Res ~D-'(wt)(cos(wtd/v)-cos(dvf~ - 1-))}. (16) 
Ia = - 2 7 r i ~  1 : e x ~ v )  ~(,~,)<0 t 

1 

As one can see from (15) and (16), there are two cases that are suspicious for the resonance (i.e., an 
offset of the "spoke" y0(0) tends toward infinity when its viscosity u tends toward zero): 

(a) The equation D(w) = 0 for u = 0 has a multiple real root, and the integral (12) should seemingly 
diverge as the Fourier transform of the function that has a multiple root on the real axis; 

(b) The root of the equation D(w) -- 0 for u = 0 coincides with one of the roots of the equation 
1 - exp (+iwdN/v) = 0, so either 12 or 13 tend toward infinity. 

Let us carefully examine the two conditions above. Case (a) implies that the group velocity dw/dkj of 
one of the radiated harmonics coincides with the load velocity v. Certainly, the expression dw/dkj = v is the 
only resonance condition [7], but only for an infinite, periodically nonuniform guide interacting with a moving 
load. An isolated system does not satisfy this condition. The resonance will not occur if the wavelength of 
the radiated harmonic is not a multiple of the ring length. Indeed, let us suppose that the equation D(w) = 0 
for u = 0 has a rffultiple real root w*. In this case, the terms of expression for y0(0) all tend toward infinity. 
Designating their sum as S ~176 we obtain, according to (14)-(16): 

S ~ = a-iw_.w.+i0Res (v- l (w)(exp(iwd/v)-  e x p ( i d ~  2 -  1))} 

--~'i ~-w*R'es-io { n - i (W) (exp ( - iwd /v>-exp ( - id~2-1 ) )  } 

exp(iw'dN/v) Res ~D-i(w)(cos(wd/v)-cos(dvf~w 2 -  1))} 
+ 2~ri 1 - exp (iw*dN/v) ~--.~o +io 

exp(-iw*dNiv) {n-i(oa)(cos(wd/v) (dv/~ 2 1))}. 
- 2~ri 1 --- e x ~ v )  ,,--.o~*Res-i0 - cos - 

Using the expression =  _.Res which follows from the definition of the residue, we 

rewrite S ~176 in the form 

S ~ 2~r i l  + 1 - exp (iw*dN/v) 1 - exp (-iw*dN/v) J ,,-,o +i0 

By bringing the expression in braces to the common denominator, we easily ascertain that it is equal to zero. 
Consequently, both S ~176 and the "spoke" displacement y0(0) must remain finite. Thus, the condition (a) is not 
a condition for the resonance. 

On the contrary, the case (b) does really determine the parameters of the system at which the resonance 
is observed. Mathematically it is obvious, since y0(0) tends toward infinity due to the growth of one of the 
terms in (b). Physically condition (b) is clear enough as well. Indeed, the real roots of the equation D(w) = 0 
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(3. t1,(3,21 

7 <  I Y./ / , ,, ,.=.=.= 

Y = ~  ; o o.= , 

Fig. 3 Fig. 4 

are equal to those of (11), whereas the equations 1 - exp (+iwdN/v)  = 0 have the same solutions as the 
equation sin @dN/2v)  = O. Therefore, condition (h) can be rewritten as the following system: 

2~rj w 2~rvk 
a e + - - - d  v '  W = - - N d ,  j=0 , : t : l ,= t=2 ,  . . . . . .  , k=0,-4-1,=E2, (17) 

Taking into account that 27r/(a~ + 27r j /d)  = 2rc/kj = A/, where k/ is the wave number of the j t h  harmonic, 
and Aj is the corresponding wavelength, from (17) we derive 

jAj  = Nd, 

where Nd is the dimensionless length of the wheel. 
Thus, the resonance condition for a wheel with "spokes" is the multiplicity of one of the radiated 

harmonics to the wheel length. 
Figure 3 depicts a graphical solution to system (17). The dashed line represents the dispersive 

dependence ae (w) for a periodically nonuniform elastic system (an unfolded wheel). The points of intersection 
of the family of slanted curves wj = aev + 27rvj/d to the line ae (w) determine the frequencies of harmonics 
radiated under the load. Resonance will occur when wj coincides with one of the natural frequencies of the 
wheel w~, = 21rvk/Nd, shown in Fig. 3 by horizontal lines. 

Figure 4 shows a family of curves drawn in the plane of the parameters (d, v). Resonance will occur when 
the parameters of the system fall on one of these curves (we put K = 0.7, ~ = 0, M = 0.3, N = 2). Of course, 
not all solutions of (17) are drawn here (there is a countable set of them) but only those corresponding to the 
three lowest natural frequencies of the wheel. There is no reason to take into account the higher frequencies 
because their resonances are most likely to be suppressed by the dissipation that takes place in all real wheels. 
We put the subscripts (j, k) at the points of intersection of the curves with the straight line v = 1; the 
first index denotes the serial number of wheel eigen frequency while the second one corresponds to the serial 
number of radiated harmonics. As one can see from the drawing, if the distance between the spokes d is fixed, 
there exists a set of load velocities at which resonance occurs. Naturally, the presence of dissipation will affect 
the amplitude of resonance oscillations differently at different velocities. 

To select the velocities coressponding to the most "powerful" resonances (less suppressed by the 
dissipation), one must have in mind the following two rules: 1) the lower the resonance frequency, the more 
powerful the resonance; 2) the higher the load velocity, the more powerful the resonance. The first rule reflects 
the fact that the dissipation increases with the oscillation frequency; the second rule follows from the increase 
in power of transition radiation observed when the load velocity increases. 

In conclusion, it should also be noted that the resonance conditions (17), though derived from our 
simple model, are general and permit the resonance parameters to be estimated for more complex models of 
the wheel that are closer to reality. According to (17), this problem is reduced to either analytical derivation 
or experimental determination of the dispersive dependence for waves propagating in the wheel. 
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